1,319 research outputs found

    Data Asset Management and Visualization Based on Intelligent Algorithm: Taking Power Equipment Data as An Example

    Get PDF
    Data asset management is adequate in solving the problem of data silence and data idleness for enterprises. Through intelligent algorithms such as neural network, in-depth learning and block chain, and guided by business needs, it extracts, analyzes and visualizes the existing business precipitation data, and forms scattered and disordered data into valuable information to support the development of the company, so as to activate data assets. Taking the management data of electric power equipment as an example, this paper proposes a method of fusion of multiple intelligent control algorithms. The specific modules include the fusion of heterogeneous data; feature extraction of equipment asset management data based on machine learning; intelligent control of multi-objective optimization environment based on energy consumption data; BIM data visualization based on data classification-energy extraction-neural network (SVM-CART-SAE-DNN) algorithm fusion. The algorithm can effectively improve the efficiency of equipment management and enhance the security and economy of power infrastructure through intelligent control of equipment management

    Minimizing Seed Set Selection with Probabilistic Coverage Guarantee in a Social Network

    Full text link
    A topic propagating in a social network reaches its tipping point if the number of users discussing it in the network exceeds a critical threshold such that a wide cascade on the topic is likely to occur. In this paper, we consider the task of selecting initial seed users of a topic with minimum size so that with a guaranteed probability the number of users discussing the topic would reach a given threshold. We formulate the task as an optimization problem called seed minimization with probabilistic coverage guarantee (SM-PCG). This problem departs from the previous studies on social influence maximization or seed minimization because it considers influence coverage with probabilistic guarantees instead of guarantees on expected influence coverage. We show that the problem is not submodular, and thus is harder than previously studied problems based on submodular function optimization. We provide an approximation algorithm and show that it approximates the optimal solution with both a multiplicative ratio and an additive error. The multiplicative ratio is tight while the additive error would be small if influence coverage distributions of certain seed sets are well concentrated. For one-way bipartite graphs we analytically prove the concentration condition and obtain an approximation algorithm with an O(logn)O(\log n) multiplicative ratio and an O(n)O(\sqrt{n}) additive error, where nn is the total number of nodes in the social graph. Moreover, we empirically verify the concentration condition in real-world networks and experimentally demonstrate the effectiveness of our proposed algorithm comparing to commonly adopted benchmark algorithms.Comment: Conference version will appear in KDD 201

    Numerical Security Analysis of Three-State Quantum Key Distribution Protocol with Realistic Devices

    Full text link
    Quantum key distribution (QKD) is a secure communication method that utilizes the principles of quantum mechanics to establish secret keys. The central task in the study of QKD is to prove security in the presence of an eavesdropper with unlimited computational power. In this work, we successfully solve a long-standing open question of the security analysis for the three-state QKD protocol with realistic devices, i,e, the weak coherent state source. We prove the existence of the squashing model for the measurement settings in the three-state protocol. This enables the reduction of measurement dimensionality, allowing for key rate computations using the numerical approach. We conduct numerical simulations to evaluate the key rate performance. The simulation results show that we achieve a communication distance of up to 200 km.Comment: 14 pages, 5 figure

    Performance study of air interface for broadband wireless packet access

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Special Libraries, November 1962

    Get PDF
    Volume 53, Issue 9https://scholarworks.sjsu.edu/sla_sl_1962/1008/thumbnail.jp

    A hybrid algorithm for quadratically constrained quadratic optimization problems

    Full text link
    Quadratically Constrained Quadratic Programs (QCQPs) are an important class of optimization problems with diverse real-world applications. In this work, we propose a variational quantum algorithm for general QCQPs. By encoding the variables on the amplitude of a quantum state, the requirement of the qubit number scales logarithmically with the dimension of the variables, which makes our algorithm suitable for current quantum devices. Using the primal-dual interior-point method in classical optimization, we can deal with general quadratic constraints. Our numerical experiments on typical QCQP problems, including Max-Cut and optimal power flow problems, demonstrate a better performance of our hybrid algorithm over the classical counterparts.Comment: 8 pages, 3 figure
    corecore